



# Pédagogie de l'action climatique pour une transition éclairée

#### Thierry de Larochelambert

Professeur associé à l'Institut Femto-ST CNRS-UMR6174, Département Énergie Chaire Supérieure de Physique-Chimie Docteur en Énergétique

courriel: thierry.de-larochelambert@femto-st.fr





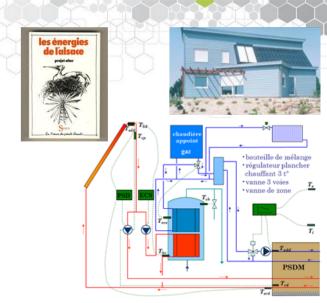




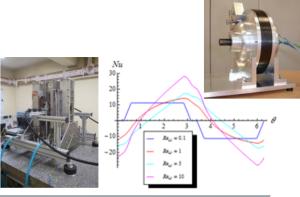


- 1. introduction
- 2. compréhension des enjeux
- 3. local / global
- 4. la pédagogie au cœur du choix conscient
- 5. la transition éclairée
- 6. l'avenir vous appartient




### 1. introduction

#### 1.1. présentation

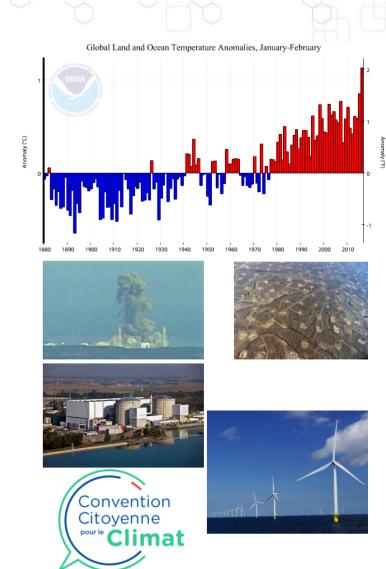

- ☐ Professeur Agrégé de Physique & Chimie, Chaire Supérieure de Physique & Chimie
- ☐ Docteur en Energétique (Université de Haute-Alsace)
- ☐ Professeur Associé et Chercheur à l'Institut FEMTO-ST, Département Energie, Belfort (2007-2019)
- ☐ Responsable du Pôle Magnétocalorique du Dpt Energie, Institut FEMTO-ST (2015-2019)
- ☐ Professeur Associé et Chercheur au Laboratoire Gestion des Risques et Environnement UHA (1997-2007)
- ☐ Membre de l'association Global Chance (2016-)
- ☐ Co-fondateur du **Projet Alter Alsace** (aujourd'hui **Alter Alsace Energies**) (1980)

#### Principaux travaux de recherche

- ☐ Projet de chauffage urbain géothermique de Lutterbach (1980-1986)
- ☐ Recherche sur les *scénarios régionaux 100% EnR* (livre "Les énergies de l'Alsace Projet Alter" 1983)
- ☐ Conception, optimisation, réalisation, mesures, modélisation du PSDM (*Plancher Solaire Direct Mixte*) 1990-2005
- ☐ Transition turbulente des couches limites en convection naturelle le long de parois verticales fortement chauffées
- ☐ Publication de la méthode thermoanémométrique **SWICTA** (*Sliding Window Cross-correlation Thermo-Anemometry*)
- ☐ Cours « *Mécanique des fluides expérimentale et théorique* » ENSISA-UHA
- ☐ Recherches sur *l'effet magnétocalorique et le développement de systèmes AMRR*
- ☐ *Métrologie photo-thermique* des propriétés thermo-physiques des matériaux magnétocaloriques
- ☐ Modélisation des phénomènes critiques, des exposants criques et de l'équation d'état magnétique du gadolinium
- ☐ Cours «Énergétique solaire dans les bâtiments bioclimatiques », UFC, CNAM Alsace
- ☐ Etude mathématique des transferts de chaleur et de quantité de mouvement dans les écoulements alternés
- ☐ Analyse des politiques énergétiques et des transitions énergétiques vers les systèmes 100% EnR
- ☐ Analyses sûreté nucléaire (déchets, matériaux, GV, cuves, réacteurs, Gen III, Gen IV, fusion)










### 1. introduction

#### 1.2. contexte

- changement climatique accéléré (GIEC → dernières simulations 2050-2100)
- menaces croissantes sur la biodiversité
- échec marché carbone, succès taxe carbone (Suède, Danemark)
- croissance des consommations fossiles mondiales et émissions GES
- accidents nucléaires (St Laurent-des-eaux 1969, 1980; TMI 1979; Tchernobyl 1986: Fukushima 2011: ...?)
- sorties du nucléaire programmées (Allemagne, Belgique, Corée du Sud, Italie, Suisse, etc.), sorties charbon (France, Allemagne)
- incertitudes nucléaires (coûts, grand carénage, EPR, vieillissement, dossiers barrés Areva, ségrégations carbone GV et EPR, non-conformités traitement thermique détensionnement GV + pressuriseur, déchets HA-MAVL, démantèlements, déchets TFA-FAVL, risques terroristes, risques d'accidents maieurs, prolongement des REP après 40 ans)
- prolifération nucléaire militaire
- dépendance énergétique européenne (pétrole, gaz, uranium)
- EnR → forte baisse des prix + développement mondial accéléré
- objectifs européens 2030 et 2050 renforcés (ENR, sobriété)
- ► fermeture Fessenheim 1 (22 février 2020), Fessenheim 2 (30 juin 2020)
- ▶ PPE 2023-28 → 50% électricité nucléaire 2035 → fermeture 14 réacteurs
- Convention citoyenne pour le climat (2019)





#### 2.1. conscience des choix

« choice awareness » (Henrik Lund, *Université d'Aalborg, Danemark*)

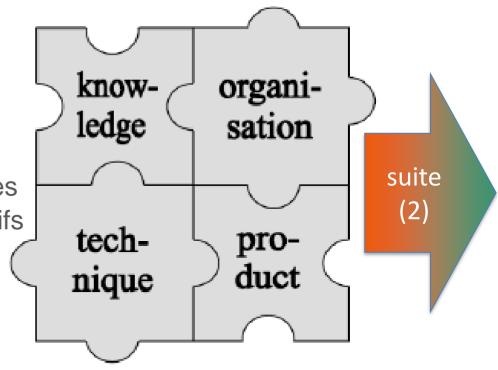
- être conscients que nos sociétés ne donnent pas automatiquement un vrai choix
- être conscients des alternatives possibles et réalistes
- être conscients d'avoir un vrai choix collectivement
- être conscients de la manière de poursuivre et de garantir un véritable choix
- être conscients des impacts écologiques, économiques et sociétaux des décisions
- ▶ information objective, rigoureuse, complète
- transparence des données et des actions



1 élaboration d'alternatives technologiques concrètes

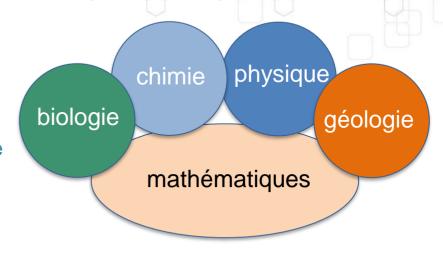
2. études de faisabilité économique

3. propositions de mesures de régulation publique


4. promotion de nouvelles entreprises et d'une infrastructure démocratique



#### 2.2. connaître pour comprendre


maîtriser les connaissances scientifiques minimales

- comprendre la complexité (1)
  - réchauffement climatique
  - analyses des cycles de vie
  - structures des systèmes énergétiques
  - comportements individuels et collectifs
- choisir en toute responsabilité



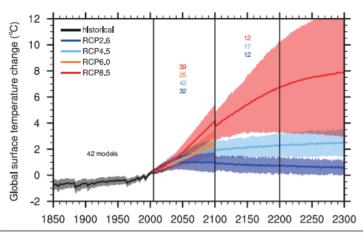


- ➤ comprendre la complexité (2)
  - réchauffement climatique
    - effets anthropiques / cycles naturels
    - forçage radiatif des gaz à effet de serre
    - interactions atmosphère-océans-glaces-biologie
    - rétroactions climatiques
    - paléoclimats et simulations climats futurs
  - analyses des cycles de vie
    - ressources naturelles : eau, air, terres, sous-sols, océans, matériaux, énergies de flux et de stock, biomasse
    - > soutenabilité, équilibre, mesure, sobriété, économie circulaire, santé / épuisement, appauvrissement, productivisme, déchets, pollution, démesure, hubris, maladies
  - structures des systèmes énergétiques
    - sources d'énergie et modes de production, distribution, consommation, stockage d'énergie: énergies renouvelables/fossiles-fissiles, sobriété/surconsommation, efficacité/gaspillage, couplage-optimisation des SES/découplage-juxtaposition
    - impact déterminant : régulation, cohérence, planification/dérégulation, déconnexion, imprévision
  - comportements individuels et collectifs
    - cohérence, interaction, interdépendance, solidarités, solidité: production agricole ↔ choix alimentaires, transports et chauffage et achats ↔ énergie & pollution & emplois

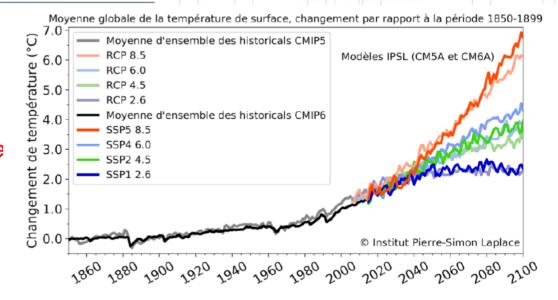


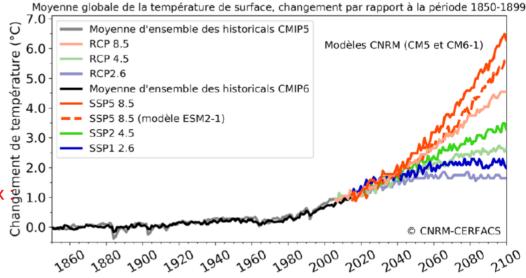







- **☐** Representative Concentration Pathways
  - •RCP8.5 (+8,5 W.m<sup>-2</sup> en 2100) : laisser-faire
  - •RCP6.0 (+6,0 W.m<sup>-2</sup> en 2100)
  - •RCP4.5 (+4,5 W.m<sup>-2</sup> en 2100)
  - •RCP2.6 (+2,6 W.m<sup>-2</sup> en 2100) :


volontariste, avec captage CO<sub>2</sub>


□ projections 2100 (GIEC)

• $\Delta T$  < 2°C  $\Rightarrow$  émissions < 1000 GtCO<sub>2</sub>











#### 2.3. déontologie, philosophie de l'action civique

- **▲** information
- ▲ objectivité, rigueur
- ▲ modération, démocratie (liberté), ouverture
- ▲ formation, évolution, épanouissement
- ▲ progrès humain et scientifique





- ▼ désinformation
- ▼ subjectivité, manipulation
- ▼ passion, autoritarisme (extrémisme), fermeture
- ▼ inadaptation, stagnation, stress
- ▼ déshumanisation, obscurantisme



# 3. local, global

#### 3.1. solutions locales

- ► contrôlables à l'échelle humaine
  - démocratie participative et délibérative
  - responsabilité individuelle et collective
- ▶ rôle de démonstration
  - efficacité, retour d'expérience
- prolongation et amélioration (temps)
- → généralisation (espace)

#### 3.2. ici et maintenant

urgence climatique, écologique et sanitaire

#### 3.2. du local au global

- synergies globales des actions locales
- planification démocratique consciente bidirectionnelle

local

(individu, famille, quartier, commune, département, région)











INCENIBRFORENINGEN I DANHARK



**global** (pays, Europe, monde)



# 4. la pédagogie au cœur du choix conscient

#### 4.1. pédagogie de l'exemple

- échelle individuelle
  - déplacements doux, choix et conduite automobile
  - gestes quotidiens d'économies d'énergies
  - achats magasins locaux
  - alimentation + végétale + bio
  - ▶ investissements: isolation thermique, appareils sobres et utiles, EnR
- échelle communale
  - investissements → circulation, rénovation, équipements: sobriété, efficacité, EnR
  - ► fonctionnement → sobriété, démocratie, solidarités sociales et inter-quartiers, biodiversité
- échelle départementale et régionale
  - investissements → réseaux énergétiques intelligents couplés, planification Région-communes: EnR, stockages, transports collectifs
- ❖ échelle nationale
  - ▶ investissements → infrastructures nationales, planification Etat-Régions



# 4. la pédagogie au cœur du choix conscient

### 4.2. pédagogie de la transition

- échange des bonnes pratiques locales
- ❖ entraide à la mise en place des projets → Tepos
- ❖ formation par l'exemple → personnels administratifs, élus, etc. / associations
- éducation des élèves
  - être acteurs
  - climat-énergie (sobriété, efficacité, EnR)
  - nature (respect, biodiversité, santé, solidarités sociales et inter-quartiers)
- formation professionnelle
  - nouveaux métiers (EnR, réseaux couplés intelligents, stockages, matériaux biosourcés, agriculture biologique et permaculture, etc.)
  - ► formation universitaire (Licence, Master, ingénierie, Doctorat) → climat-énergie
  - nouvelle économie (banques solidaires et écologiques, investissements à moyen terme, décarbonation des entreprises, etc.)
- échanges internationaux (villes, régions, entreprises, universités)
  - apprentissage des structures et des méthodes soutenables et efficaces



#### l'exemple danois



- politique planifiée démocratiquement depuis 1976
- rejet démocratique du nucléaire (débats + parlement: mars 1985)
- baisse continue de consommation EP:

DK: 46,4 MWh/hab (1972) → 38,8 MWh (3,34 tep)/hab (2012)

→ 3,21 tep/hab (2016)

F: 41,2 MWh/hab (1972) → 46,3 MWh (3,98 tep)/hab (2012)

- → 3,84 tep/hab (2016)
- forte baisse des émissions GES (hors UTCF):

DK: 15,6 tCO<sub>2ég</sub>/hab (1972)  $\rightarrow$  13,4 tCO<sub>2ég</sub>/hab (1990)

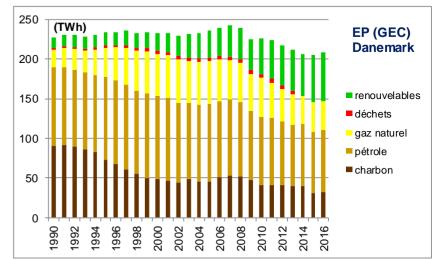
→ 8,4 tCO<sub>2éa</sub>/hab (2016) ► -36,9% par rapport à 1990

F: 9,6 tCO<sub>2éq</sub>/hab (1990)  $\rightarrow$  6,9 tCO<sub>2éq</sub>/hab (2016)

► -28,1% par rapport à 1990

source: Danish Energy Agency

PIB/hab:


DK/F<sub>2016</sub> = 1,45 ► DK 174,2 tCO<sub>2ég</sub>/M€PIB

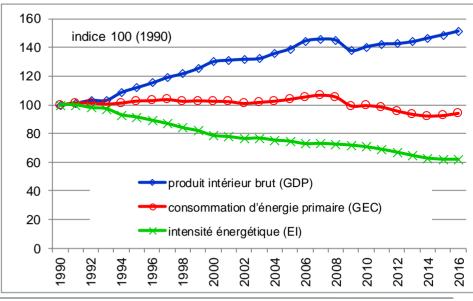
France: 207,8 tCO<sub>2éq</sub>/M€PIB (+19,3%)



#### le Danemark

lat. N 57°42'- N 54°35'
42922 km²
7314 km de côtes
391 îles
16% de forêts
0,1°C janvier
17,3°C juillet
1780 h d'ensoleillement
669 mm de pluie/an
5,63 millions d'habitants
130,5 habitants/km²



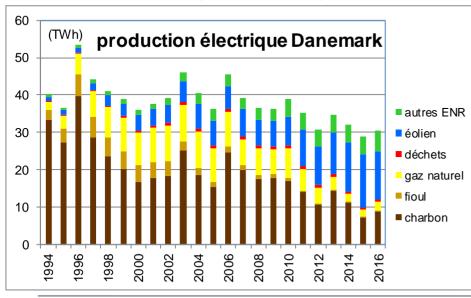



### l'exemple danois (suite)

- grande efficacité énergétique **EF/EP** (2016) = **83,8%** (France: **59,7%**)
- faible intensité énergétique IEP (2016) = 0,771 kWh/€PIB (France 1,34 kWh/€PIB = ×1,74 Danemark)
- 1er producteur mondial éolien/habitant: 2230 kWh/hab en 2016 (France 320 kWh/hab)
- premiers parcs éoliens offshore
- électricité renouvelable + cogénération
  - → cogénération = 55,6% de la production électrique (France 2%)
    - ≈ 100% de l'électricité hors éolien et photovoltaïque
  - → cogénération ≈ 66,5% de la chaleur des réseaux de chaleur
  - → cogénération → rendement > 90% (50% électr. + 40% chaleur)
  - → électricité renouvelable variable 44,3% (2016) (France: 5,4%)
  - $\rightarrow$  EnR = 60,5% électricité (2016) (France: 19,9%)
  - → électricité éolienne 43,4% (2017) (France: 3,9%)
- réseaux de chaleur 49,7% chauffage (43,7% habitat; 71,0% tertiaire)
- indépendance énergétique élevée 90% (France: 10%)
- part élevée des ENR: 32,3% EP (2017) ajustée des imports/exports (France 9,4%)

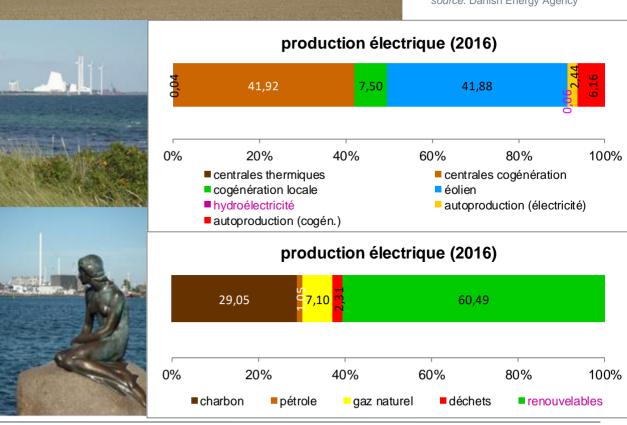









### l'exemple danois (suite)


#### production électricité 2016

- cogénération généralisée dont ENR biomasse (28,1% CHP; 55,4% chp)
- forte pénétration éolien + photovoltaïque
- ▶ 90% éoliennes propriété citoyenne & publique (coopératives, municipalités, fermiers, individus)
- élimination progressive fioul, gaz et charbon





source: Danish Energy Agency

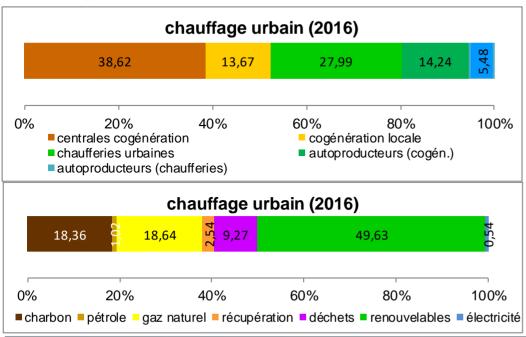




#### l'exemple danois (suite)

#### production chaleur 2016

- réseaux de chaleur généralisés
  - → ENR 49,6%
  - → 43,7% résidentiel
  - → 71,0% tertiaire (commerces, services)
- cogénération ► 66,5% réseaux de chaleur

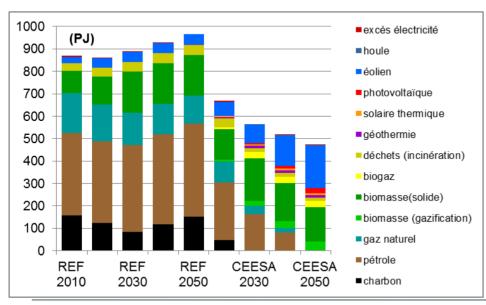

solaire thermique systématique (20-50%): Aalborg, Smørum, Gram



■ DH\_Mårup (Samsø)

▼ CHP-DH Gråsten










### l'exemple danois (suite)

- planification nationale 100% renouvelable 2050
  - 35% consommation d'énergie finale = EnR en 2020
  - 50% électricité = éolien en 2020
  - 100% électricité et chaleur = EnR 2035
  - 100% énergie = EnR en 2050
- mise en place des Smart Energy Systems
  - réseaux électricité + chaleur + froid + gaz couplés
  - 50% électricité = éolien en 2020









#### les TEPOS

#### ▶ Muttersholtz

→ économie 165 MWh (éclairage, école BBC), ENR 995 MWh (micro-centrale hydraulique, photovoltaïque, réseau chaleur bois)

#### vallée de la Doller et du Soultzbach

→ éclairage, rénovation énergétique, plan déplacement interentreprise et co-voiturage, autonomie énergétique de 2 sites de montagne isolés, réhabilitation 3 micro-centrales hydroélectriques, filière bois-énergie, soutien filières agricoles courtes et zéropesticide, 6 ambassadeurs de tri de déchets

#### ▶ vallée de Kaysersberg

→ embauche 1 coordinateur, véhicules propres, pistes cyclables, aide autorénovation énergétique foyers précaires, éclairage, construction bâtiment public EP, restauration collective en bio local

#### ▶ Uzerche

→ chaufferie bois, réseau chaleur, 2 mini-centrales hydroélectriques, éco-quartier 4 ha, 600 m² PV (école, auditorium) + parc PV 7 ha, méthaniseur pour réseau chauffage ⇒ production ENR = 2 × cons finale





#### ► Jonzac (3500 hab, Charentes-Poitou)

- → géothermie dès 1979 (-1800 m, 65°C)
- → réseau de chaleur jusqu'en 1986 puis cure thermale (15000/an, 100 emplois)
- $\rightarrow$  2<sup>ème</sup> forage géothermique 1992 (-1872 m, 2 MW<sub>th</sub>, 11500 kWh/an)
- → pompe à chaleur en retour (+10% de production), centre aquatique (2500/j)
- → réseau de chaleur sur plus de 30 km, 3000 logements
- → chaudière bois (50000 m³/an) + cultures énergétiques locales (eucalyptus, pinus, saules)
- → 4 parcs photovoltaïques:
- 17 ha, 10,7 MW<sub>c</sub>, 12550 MWh/an pour 5000 foyers (exploitation Longsol)
- 16,5 ha, 5,5 MW<sub>c</sub> (exploitation EDF-EN)
- 10 ha, 5,1 MW<sub>c</sub> (exploitation Eosol)
- 3,5 ha, 1,5 MW<sub>c</sub> (exploitation Dubreuil Sarl)

#### $\rightarrow$ projets 2017:

- 5 forages géothermiques (1 à -1850 m, 4 à -80 m ouverts pour baignade)
- 2ème réseau de chaleur 2.5 MW + réseau de froid 0.45 MW
- approvisionnement du centre aquapaludique (élimination des 20% restants d'énergies fossiles encore consommées), d'un centre de congrès, d'une maison de retraite, d'un hôtel
- 2 parcs photovoltaïques (12 ha, 12 MW chacun), ombrières PV 100 kW pour recharge VE, toits PV court de tennis, centrale PV pour station épuration)
- 1 unité de biogaz











# 6. l'avenir vous appartient

### agir vite

- mettre en place les débat-conférences citoyens
- ❖ modifier améliorer construire les Plans Climat-Energie, les SRADDET
- ❖ modifier les PPE à venir → systèmes énergétiques intelligents
- renforcer et verdir la RE2020 (EnR, chauffage électrique)
- ❖ sortir très vite des énergies fossiles (2020 2030)
- sortir des pesticides
- ❖ sortir du tout voiture, tout camion → respirer
- ❖ nucléaire ➡ , EnR + sobriété + efficacité
- \* mettre en place les taxes carbone, azote, fossile





# 6. l'avenir vous appartient

### pour prévenir la catastrophe climatique

- responsabilité des citoyens
- \* responsabilité des élus
- responsabilité des consommateurs
- \* responsabilité des salariés, fonctionnaires
- responsabilité des entreprises
- responsabilité des agriculteurs
- responsabilité des formateurs
- responsabilité des journalistes
- \* responsabilité des créateurs, des artistes, des artisans
- responsabilité des chercheurs

#### pour construire un monde soutenable

... sans attendre





# 6. l'avenir vous appartient



#### ## éléments d'information

#### Travaux recherche:

https://www.researchgate.net/publication/331970450 PROPOSITIONS POUR LA TRANSITION ENERGETIQUE DANS LE HAUT-RHIN ET LE TERRITOIRE DE BELFORT APRES FERMETURE DEFINITIVE DE LA CENTRALE NUCLEAIRE DE FESSENHEIM

https://www.researchgate.net/publication/330912552 VERS UN SYSTEME ENERGETIQUE EFFICACE POUR LA FRANCE -

CONTRIBUTION AU DEBAT PUBLIC PPE Towards an efficient energy system for France - contribution to the French public debate on the Multiannual Energy

https://energiesocieteecologie.home.blog/2016/02/06/la-transition-energetique-du-danemark/

http://cpdp.debatpublic.fr/cpdp-cigeo/ script/ntsp-document-file downloadda21.pdf?document id=157&document file id=165

http://cpdp.debatpublic.fr/cpdp-cigeo/ script/ntsp-document-file download8fba.pdf?document id=158&document file id=166

https://www.researchgate.net/publication/24148319 Plancher solaire direct mixte a double r'eseau en habitat bioclimatique -

Conception et bilan thermique r'eel Double direct solar floor heating in boclimatic habitation - Design and real energetical b

https://energiesocieteecologie.home.blog/2020/02/vieillissement-thermique-sous-irradiation-des-aciers-nucleaires-et-prolongement-de-service-des-reacteurs-nucleaires-900-mw/

Véhicules électriques rechargeables, analyses de cycle de vie EnR, pollution camions GNL:

http://www.fondation-nicolas-hulot.org/sites/default/files/vehicule\_electrique\_rapport.zip

https://innovationorigins.com/correcting-misinformation-about-greenhouse-gas-emissions-of-electric-vehicles-auke-hoekstras-response-to-damien-ernsts-calculations/

https://www.ffe.de/publikationen/pressemeldungen/856-klimabilanz-von-elektrofahrzeugen-ein-plaedoyer-fuer-mehr-sachlichkeit

https://www.ffe.de/attachments/article/856/Klimabilanz\_Elektrofahrzeugbatterien\_FfE.pdf

https://www.ffe.de/attachments/article/698/Begleitdokument Klimabilanz Elektrofahrzeugbatterien FfE.pdf

https://www.ffe.de/attachments/article/856/Klimabilanz\_Elektrofahrzeugbatterien\_FfE.pdf

https://www.rte-france.com/sites/default/files/electromobilite\_synthese\_9.pdf

https://northvolt.com/

https://www.ademe.fr/terres-rares-energies-renouvelables-stockage-denergies

https://www.transportenvironment.org/sites/te/files/publications/2019 09 do gas trucks reduce emissions paper FR.pdf

https://sonomotors.com/en/sion/

https://www.renault.fr/vehicules/vehicules-electriques/nouvelle-zoe/dimensions-et-moteur.html



### Merci pour votre attention

